博客
关于我
IEEE TMM 2020:细化超分辨网络,解决上采样引起的振荡
阅读量:545 次
发布时间:2019-03-09

本文共 1110 字,大约阅读时间需要 3 分钟。

IEEE TMM 2020 论文:用于解决上采样引起振荡的细化超分辨网络

本文介绍了一种基于深度学习的图像超分辨率(SR)方法,提出了“粗到细”卷积神经网络(Coarse-to-Fine CNN, CFSRCNN),用于解决传统上采样方法在训练过程中引起的振荡问题。该方法不仅提升了超分辨率恢复的稳定性,还在性能和计算效率之间实现了良好的平衡。

工作原理

CFSRCNN是一种级联网络结构,主要由特征提取块(FEBs)、增强块(EB)、构造块(CB)和细化块(FRB)组成。网络通过多层特征提取和融合机制,有效捕捉图像的低频和高频特征,确保在上采样过程中不会引入不稳定性。

  • 特征提取与增强:FEBs层采用异构卷积结构,结合局部和全局特征,通过信号传递机制增强特征表达。1x1卷积的设计优化了特征提取效率,同时保留了边缘信息。

  • 残差学习与特征融合:CB层通过融合FEBs和EB的输出特征,利用上采样操作和残差学习技术,捕捉互补的高频和低频信息,减少信息丢失。

  • 细化网络:FRB层进一步细化特征,提取更为精确的SR特征,提升模型的稳定性和恢复效果。

  • 与先前的方法的区别

  • 网络结构优化:CFSRCNN采用异构卷积和3x3/1x1卷积结构,显著降低了网络的深度和复杂度。与流行的RDN和CSFM方法相比,参数量仅为其5.5%和9.3%。

  • 残差学习与特征增强:EB模型使用残差学习技术代替传统的Concat操作,增强了特征的鲁棒性。通过多层堆积平滑了低频特征,防止了像素增强过度。

  • 全局与局部特征融合:CFSRCNN通过上采样操作和残差学习技术,有效结合了图像的全局和局部特征,避免了传统方法中因上采样引起的训练不稳定问题。

  • 实验结果

    CFSRCNN在多个基准数据集(如Set5、Set14、B100、U100、720p)上展现了优异的性能。以下是部分实验结果:

  • 不同缩放因子下的SR性能:CFSRCNN在多个基准数据集上与其他方法进行对比,显著提升了超分辨率恢复的质量和稳定性。

  • 训练时间与复杂度:CFSRCNN的复杂度和训练时间显著低于传统方法,同时保持了高性能。

  • 可视化结果:在Set14和B100等数据集上,CFSRCNN恢复的高清图像质量得到了广泛认可。

  • 贡献

  • 提出了一种结合了LR和HR特征的级联网络结构,有效解决了传统上采样方法引起的训练不稳定问题。

  • 基于异构卷积提出的新型特征融合机制,显著提升了SISR性能,同时保留了图像质量。

  • 在性能和计算效率之间实现了良好的平衡,为超分辨率任务提供了高效的解决方案。

  • 论文与代码链接

    如需更多信息,请访问52CV网

    转载地址:http://eydsz.baihongyu.com/

    你可能感兴趣的文章
    Nginx访问控制_登陆权限的控制(http_auth_basic_module)
    查看>>
    nginx负载均衡和反相代理的配置
    查看>>
    nginx负载均衡器处理session共享的几种方法(转)
    查看>>
    nginx负载均衡的5种策略(转载)
    查看>>
    nginx负载均衡的五种算法
    查看>>
    nginx转发端口时与导致websocket不生效
    查看>>
    Nginx运维与实战(二)-Https配置
    查看>>
    Nginx配置Https证书
    查看>>
    Nginx配置ssl实现https
    查看>>
    Nginx配置TCP代理指南
    查看>>
    Nginx配置——不记录指定文件类型日志
    查看>>
    nginx配置一、二级域名、多域名对应(api接口、前端网站、后台管理网站)
    查看>>
    Nginx配置代理解决本地html进行ajax请求接口跨域问题
    查看>>
    nginx配置全解
    查看>>
    Nginx配置参数中文说明
    查看>>
    nginx配置域名和ip同时访问、开放多端口
    查看>>
    Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
    查看>>
    Nginx配置如何一键生成
    查看>>
    Nginx配置实例-负载均衡实例:平均访问多台服务器
    查看>>
    Nginx配置文件nginx.conf中文详解(总结)
    查看>>