博客
关于我
IEEE TMM 2020:细化超分辨网络,解决上采样引起的振荡
阅读量:545 次
发布时间:2019-03-09

本文共 1110 字,大约阅读时间需要 3 分钟。

IEEE TMM 2020 论文:用于解决上采样引起振荡的细化超分辨网络

本文介绍了一种基于深度学习的图像超分辨率(SR)方法,提出了“粗到细”卷积神经网络(Coarse-to-Fine CNN, CFSRCNN),用于解决传统上采样方法在训练过程中引起的振荡问题。该方法不仅提升了超分辨率恢复的稳定性,还在性能和计算效率之间实现了良好的平衡。

工作原理

CFSRCNN是一种级联网络结构,主要由特征提取块(FEBs)、增强块(EB)、构造块(CB)和细化块(FRB)组成。网络通过多层特征提取和融合机制,有效捕捉图像的低频和高频特征,确保在上采样过程中不会引入不稳定性。

  • 特征提取与增强:FEBs层采用异构卷积结构,结合局部和全局特征,通过信号传递机制增强特征表达。1x1卷积的设计优化了特征提取效率,同时保留了边缘信息。

  • 残差学习与特征融合:CB层通过融合FEBs和EB的输出特征,利用上采样操作和残差学习技术,捕捉互补的高频和低频信息,减少信息丢失。

  • 细化网络:FRB层进一步细化特征,提取更为精确的SR特征,提升模型的稳定性和恢复效果。

  • 与先前的方法的区别

  • 网络结构优化:CFSRCNN采用异构卷积和3x3/1x1卷积结构,显著降低了网络的深度和复杂度。与流行的RDN和CSFM方法相比,参数量仅为其5.5%和9.3%。

  • 残差学习与特征增强:EB模型使用残差学习技术代替传统的Concat操作,增强了特征的鲁棒性。通过多层堆积平滑了低频特征,防止了像素增强过度。

  • 全局与局部特征融合:CFSRCNN通过上采样操作和残差学习技术,有效结合了图像的全局和局部特征,避免了传统方法中因上采样引起的训练不稳定问题。

  • 实验结果

    CFSRCNN在多个基准数据集(如Set5、Set14、B100、U100、720p)上展现了优异的性能。以下是部分实验结果:

  • 不同缩放因子下的SR性能:CFSRCNN在多个基准数据集上与其他方法进行对比,显著提升了超分辨率恢复的质量和稳定性。

  • 训练时间与复杂度:CFSRCNN的复杂度和训练时间显著低于传统方法,同时保持了高性能。

  • 可视化结果:在Set14和B100等数据集上,CFSRCNN恢复的高清图像质量得到了广泛认可。

  • 贡献

  • 提出了一种结合了LR和HR特征的级联网络结构,有效解决了传统上采样方法引起的训练不稳定问题。

  • 基于异构卷积提出的新型特征融合机制,显著提升了SISR性能,同时保留了图像质量。

  • 在性能和计算效率之间实现了良好的平衡,为超分辨率任务提供了高效的解决方案。

  • 论文与代码链接

    如需更多信息,请访问52CV网

    转载地址:http://eydsz.baihongyu.com/

    你可能感兴趣的文章
    Net与Flex入门
    查看>>
    net包之IPConn
    查看>>
    Net操作配置文件(Web.config|App.config)通用类
    查看>>
    Neutron系列 : Neutron OVS OpenFlow 流表 和 L2 Population(7)
    查看>>
    New Relic——手机应用app开发达人的福利立即就到啦!
    查看>>
    NFinal学习笔记 02—NFinalBuild
    查看>>
    NFS
    查看>>
    NFS Server及Client配置与挂载详解
    查看>>
    NFS共享文件系统搭建
    查看>>
    nfs复习
    查看>>
    NFS安装配置
    查看>>
    NFS的安装以及windows/linux挂载linux网络文件系统NFS
    查看>>
    NFS的常用挂载参数
    查看>>
    NFS网络文件系统
    查看>>
    nft文件传输_利用remoting实现文件传输-.NET教程,远程及网络应用
    查看>>
    NFV商用可行新华三vBRAS方案实践验证
    查看>>
    ng build --aot --prod生成文件报错
    查看>>
    ng 指令的自定义、使用
    查看>>
    nghttp3使用指南
    查看>>
    Nginx
    查看>>