博客
关于我
IEEE TMM 2020:细化超分辨网络,解决上采样引起的振荡
阅读量:545 次
发布时间:2019-03-09

本文共 1110 字,大约阅读时间需要 3 分钟。

IEEE TMM 2020 论文:用于解决上采样引起振荡的细化超分辨网络

本文介绍了一种基于深度学习的图像超分辨率(SR)方法,提出了“粗到细”卷积神经网络(Coarse-to-Fine CNN, CFSRCNN),用于解决传统上采样方法在训练过程中引起的振荡问题。该方法不仅提升了超分辨率恢复的稳定性,还在性能和计算效率之间实现了良好的平衡。

工作原理

CFSRCNN是一种级联网络结构,主要由特征提取块(FEBs)、增强块(EB)、构造块(CB)和细化块(FRB)组成。网络通过多层特征提取和融合机制,有效捕捉图像的低频和高频特征,确保在上采样过程中不会引入不稳定性。

  • 特征提取与增强:FEBs层采用异构卷积结构,结合局部和全局特征,通过信号传递机制增强特征表达。1x1卷积的设计优化了特征提取效率,同时保留了边缘信息。

  • 残差学习与特征融合:CB层通过融合FEBs和EB的输出特征,利用上采样操作和残差学习技术,捕捉互补的高频和低频信息,减少信息丢失。

  • 细化网络:FRB层进一步细化特征,提取更为精确的SR特征,提升模型的稳定性和恢复效果。

  • 与先前的方法的区别

  • 网络结构优化:CFSRCNN采用异构卷积和3x3/1x1卷积结构,显著降低了网络的深度和复杂度。与流行的RDN和CSFM方法相比,参数量仅为其5.5%和9.3%。

  • 残差学习与特征增强:EB模型使用残差学习技术代替传统的Concat操作,增强了特征的鲁棒性。通过多层堆积平滑了低频特征,防止了像素增强过度。

  • 全局与局部特征融合:CFSRCNN通过上采样操作和残差学习技术,有效结合了图像的全局和局部特征,避免了传统方法中因上采样引起的训练不稳定问题。

  • 实验结果

    CFSRCNN在多个基准数据集(如Set5、Set14、B100、U100、720p)上展现了优异的性能。以下是部分实验结果:

  • 不同缩放因子下的SR性能:CFSRCNN在多个基准数据集上与其他方法进行对比,显著提升了超分辨率恢复的质量和稳定性。

  • 训练时间与复杂度:CFSRCNN的复杂度和训练时间显著低于传统方法,同时保持了高性能。

  • 可视化结果:在Set14和B100等数据集上,CFSRCNN恢复的高清图像质量得到了广泛认可。

  • 贡献

  • 提出了一种结合了LR和HR特征的级联网络结构,有效解决了传统上采样方法引起的训练不稳定问题。

  • 基于异构卷积提出的新型特征融合机制,显著提升了SISR性能,同时保留了图像质量。

  • 在性能和计算效率之间实现了良好的平衡,为超分辨率任务提供了高效的解决方案。

  • 论文与代码链接

    如需更多信息,请访问52CV网

    转载地址:http://eydsz.baihongyu.com/

    你可能感兴趣的文章
    Netty工作笔记0077---handler链调用机制实例4
    查看>>
    Netty工作笔记0084---通过自定义协议解决粘包拆包问题2
    查看>>
    Netty常见组件二
    查看>>
    netty底层源码探究:启动流程;EventLoop中的selector、线程、任务队列;监听处理accept、read事件流程;
    查看>>
    Netty核心模块组件
    查看>>
    Netty框架的服务端开发中创建EventLoopGroup对象时线程数量源码解析
    查看>>
    Netty源码—2.Reactor线程模型一
    查看>>
    Netty源码—4.客户端接入流程一
    查看>>
    Netty源码—4.客户端接入流程二
    查看>>
    Netty源码—5.Pipeline和Handler一
    查看>>
    Netty源码—6.ByteBuf原理二
    查看>>
    Netty源码—7.ByteBuf原理三
    查看>>
    Netty源码—7.ByteBuf原理四
    查看>>
    Netty源码—8.编解码原理二
    查看>>
    Netty源码解读
    查看>>
    Netty的Socket编程详解-搭建服务端与客户端并进行数据传输
    查看>>
    Netty相关
    查看>>
    Network Dissection:Quantifying Interpretability of Deep Visual Representations(深层视觉表征的量化解释)
    查看>>
    Network Sniffer and Connection Analyzer
    查看>>
    NetworkX系列教程(11)-graph和其他数据格式转换
    查看>>